logo
NICKEFFECT aims to develop novel ferromagnetic Ni-based coating materials to replace the scarce and costly Platinum and ensure high efficiency in key applications.

Social Media:

linkedin twitter

Contact:

info@nickeffect.eu
 

News

Temperature plays a crucial role in electrodeposition processes, influencing both the kinetics and thermodynamics of the reaction. As temperature increases, the rate of electrodeposition generally accelerates due to enhanced mass transport of ions to the electrode surface and increased reaction kinetics. Additionally, higher temperatures often lead to changes in the morphology, structure, and composition of the deposited material, affecting its properties such as adhesion, density, and crystallinity. However, the effect of temperature on electrodeposition can be complex, as excessive heat may also promote side reactions, electrolyte decomposition, or changes in the electrode surface, potentially leading to poor-quality deposits or altered electrochemical behavior. Thus, optimizing temperature conditions is essential for controlling the quality, uniformity, and properties of electrodeposited coatings and films.   Through collaboration with our partners and leveraging machine learning (ML) techniques, we identified the optimal temperature for electrodeposition processes. Subsequently, we embarked on physics-based modeling efforts to understand the intricate relationship...

Read More

In a period where sustainability is crucial, innovative solutions are necessary for establishing a safer and more sustainable future. And the 4SEE Cluster was born with this premise – a dynamic collaboration between 4 different projects, funded under the HORIZON-CL4-2021-RESILIENCE-01-12 topic, that aim to revolutionise metallic coatings and engineered surfaces for the European economy. NICKEFFECT, FreeMe, MOZART, and NOUVEAU are the members of this cluster that is set to redefine industry standards, and drive innovation.   The 4SEE Cluster is a collaborative initiative focusing on safe and sustainable-by-design metallic coatings and engineered surfaces. By combining resources, expertise, and knowledge, the cluster aims to address shared challenges, enhance collaboration, and accelerate progress towards safer and more sustainable solutions.   Central to the cluster's strategy are joint communication and dissemination activities. These efforts include organising workshops, webinars, and other events to share insights, foster dialogue, and promote the adoption of sustainable practices. By bringing together resources...

Read More

The impact of additives on aqueous metal electrodeposition has fascinated the electroplating community for several decades. Additives can be classified into organic and inorganic compounds. The former are most common as they act as hydrogen permeation inhibitors, crystal growth modifiers, brighteners, levellers, wetting agents, and stress relievers. Even if added to the electrolyte in small amounts, their effect on coatings’ morphology and structure is remarkable, often without changing their chemical composition. For example, saccharine, a well-known sweetener to sprinkle onto food or added to coffee, is a typical grain-refining agent in metal electrodeposition. Saccharine is thus widely used in nickel plating as a brightener. Polyethylene glycol (PEG) is also added to nickel electrolytes to reduce surface roughness, refine grains, and promote twinning. In turn, the mechanical properties of the resulting coatings such as hardness greatly improve. Caution must be taken, though, regarding the incorporation of sulphur and carbon impurities that...

Read More