Modeling materials from first principles, i.e., without the need to fit or depend on experimental data, has taken on great importance in the last twenty years. Such methodology allows a deeper understanding of the physico-chemical phenomena dictating how materials behave. Density-functional theory (DFT) has been the tool of choice for computing the properties of materials at the nanoscale for decades. Indeed, ground-state properties such as phase diagrams, magnetism, or band gaps (determining whether a material is an insulator, semiconductor, or metal) and structures as well as more advanced properties such as charge carrier mobilities, ionic conductivity, or light emission/absorption spectra are all reachable within DFT and its extensions. Because such computations are very demanding, both in terms of CPU power and human efforts, in the last 15 years additional tools have been developed to handle hundreds of thousands of such calculations and store them efficiently in databases. For example, the Materials...
Read More