logo
NICKEFFECT aims to develop novel ferromagnetic Ni-based coating materials to replace the scarce and costly Platinum and ensure high efficiency in key applications.

Social Media:

linkedin twitter

Contact:

info@nickeffect.eu

Articles

The use of standardisation in research and innovation projects aims to increase the impact and significance of the results obtained by including them in new standards. This helps to make them more accessible to industry, regulators and society at large, transferring knowledge generated in research to the market. This is in line with the European Policy on Knowledge Valorisation and the ERA Code of Practice on Standardisation, which recommend using tools such as standardisation, among others, to make research results benefit economic activity, welfare and safety in Europe.   The participation of a dedicated partner such as UNE (Spanish Association for Standardization) makes it easier for projects to develop this type of activity. UNE has already participated in more than a hundred European projects, obtaining results such as the publication of more than 60 CWAs (CEN-CENELEC Workshop Agreement), creation of working groups (WG) in CEN, contribution to standards or revision of ISO...

Read More

ADVENT Technologies is poised to capitalize on the growing opportunities in the Water Electrolysis WE market. Although the WE sector, along with its related fuel cell technologies, remains relatively small compared to other industries such as automotive, ADVENT sees immense potential for expansion.   This growth outlook is reinforced by the increasing focus on sustainability and the potential EU ban on PFAS (per- and polyfluoroalkyl substances), which are used in many conventional electrolyzers. A key driver of ADVENT’s strategy in this space is its involvement in the NICKEFFECT project, a consortium focused on developing innovative, PGM-free (Platinum Group Metals) for water electrolysis technologies.   ADVENT plans to leverage the outcomes of NICKEFFECT to establish a stronger presence in the WE market and take a leadership role in the industry.  ADVENT will use its involvement in the NICKEFFECT consortium as a platform to promote its expertise and new product offerings. By collaborating with industry leaders...

Read More

The chemical risk is a combination of hazard and exposure. Once the risk is assessed, either reducing the hazard or the level of exposure should mitigated it. In occupational health and safety, the "STOP principle" is applied. It defines the hierarchy of protective measures and groups them. The abbreviation STOP stands for Substitution, Technical measures, Organizational and Personal protective equipment.   Substitution approach   Eliminating or reducing risks before they are introduced into the workplace is the most effective way of a mitigation management. Both products and processes could be safe-by design. For example it is possible to replace hazardous substance by less hazardous, to replace powders by pellets or to replace manual by automatic process…   Technical (engineering) control   Installing technical control will remove the hazard at the source, before the workers are exposed. It is a very reliable way to control exposure as long as they are well-designed, used, and maintained. For example, it is...

Read More

Materials selection is at the heart of the NICKEFFECT project. Replacing Pt-group metals with Ni is far from trivial. Materials with new compositions, structures, and topologies have to be explored and their physical and chemical properties need to be assessed. Traditionally, this exploration has been performed experimentally: a material is first synthesized and then tested in a lab to check whether it fulfills the requirements related to its application. This approach is long, requires resources, and can lead to failure at any step of the process. The scientist iterates through materials until a good solution is found, through trial and error or serendipity.   Fortunately, in the last few decades, computational tools have reached a maturity where the stability and physical properties of materials can be predicted before synthesizing them. These tools rely on density-functional theory (DFT) or more recently on machine learning (ML) when data is available. Such computations are not...

Read More

In recent decades, both Vrije Universiteit Brussel (VUB) and Elsyca have independently developed multiple software tools for simulating Multi-Ion Transport and Reaction (MITRe) models. Originally utilized by VUB for corrosion-related simulations, the MITRem code has been revitalized under the NICKEFFECT project. It is now geared towards microscopic 3D electrodeposition simulations of porous structures. Additionally, various single-metal and alloy plating processes have been successfully modelled.   The workflow for MITRe model simulations involves several key steps. Initially, there's a need to identify the relevant species present in the electrolyte, followed by establishing a plausible electrode reaction mechanism. Subsequently, obtaining relevant kinetic parameters for the electrode reactions involved in the plating process is essential. Within the framework of the NICKEFFECT project, this was accomplished for a nickel alloy plating process of interest by retrofitting polarization curves using Elsyca PIRoDE software. These curves were based on polarization experiments conducted at Universitat Autònoma de Barcelona (UAB)...

Read More

Aitor Arredondo and Jordi Sort from Universitat Autònoma de Barcelona, NICKEFFECT’s project partners, participated at the 22nd International Conference on Magnetism (ICM2024) in Bologna Congress Center. This event is the largest gathering of the magnetism community worldwide and promises to showcase the resilience and excellence of the field, from fundamental research to innovative applications.   At ICM2024, Aitor Arredondo and Jordi Sort presented their work titled "Composition-dependent voltage-driven OFF-ON switching of ferromagnetism in Co-Ni oxide microdisks.” This research represents a significant advancement in the field of magnetism, exploring innovative methods to manipulate ferromagnetic properties through compositional changes and applied voltage.   The presentation highlighted the intricacies of OFF-ON ferromagnetism switching in Co-Ni oxide microdisks. The ability to control ferromagnetic states with precision opens new windows for applications in data storage, spintronics, and magnetic sensing technologies. Attendees expressed a strong interest in the technical aspects of the work, wanting to know more about the mechanisms...

Read More

The NICKEFFECT project participated in the Artificial Intelligence for Advanced Materials Conference (AI4AM 2024), held from July 2nd to 4th in the city of Barcelona, Spain. This cross-disciplinary international event brought together top experts from industry and research institutions who utilise Artificial Intelligence (AI) to advance discoveries in materials science. The conference's main goal is to refine automated designs for both structural and electronic material models in engineering, focusing on improving interoperability among material databases and enabling reverse material engineering.   Konrad Eiler, from NICKEFFECT's project partner Universitat Autònoma de Barcelona, did a presentation on the active learning approach used to accelerate experiments as part of the project. Konrad gave some insights on the practical benefits of the Active Learning methodology in guiding experimentalists to find the best conditions for growing Ni-W films for catalysis.     Active Learning in Materials Science   Konrad's presentation highlighted how AI, particularly Active Learning, significantly aids experimentalists in determining optimal...

Read More

The NICKEFFECT consortium got together for the 5th General Assembly meeting on June 13-14, 2024, at the Universitat Autònoma de Barcelona. This gathering marked the midpoint of the 48-month project, bringing together all partners for two full days of updates, discussions, and strategic planning.   The meeting focused on a series of presentations that provided a comprehensive overview of the project's progress. Key presentations included:   Project Management and Coordination Sustainable-by-Design approach Advancements in developing Coating Materials with tuned porosity and characterization Modelling of Electrodeposition Process Upscale of the production processes, deposition on demonstrators Dissemination, Exploitation, and Guiding & Standardization Materials validation in relevant environments   The General Assembly also counted with an exciting visit to the laboratories at the Universitat Autònoma de Barcelona's science faculty. Attendees had the opportunity to observe innovative research facilities and ongoing experiments related to the NICKEFFECT project.   As the meeting concluded, the partners had a clear roadmap for the next...

Read More

In the evolving landscape of development for new chemicals and materials, the principles of safety and sustainability have become paramount. Innovations need to be driven not only by the requirement for an effective function of new products, but also towards minimizing the harm to both human health and the environment. This is evidenced by a gradual shift from the traditional considerations of “Safe by Design” and “Sustainable by Design” towards a new, holistic approach: the concept of “Safe and Sustainable by Design” (SSbD).   SSbD aims to integrate safety and sustainability concerns from the inception of a new chemical or material, and, in an iterative approach, along the innovation pathway towards commercialization. To ensure the adoption of safety and sustainability criteria, and the implementation of the SSbD approach in a standardized manner, the European Commission and Joint Research Center have developed an SSbD framework, offering detailed guidance on the methodology and appropriate...

Read More

Temperature plays a crucial role in electrodeposition processes, influencing both the kinetics and thermodynamics of the reaction. As temperature increases, the rate of electrodeposition generally accelerates due to enhanced mass transport of ions to the electrode surface and increased reaction kinetics. Additionally, higher temperatures often lead to changes in the morphology, structure, and composition of the deposited material, affecting its properties such as adhesion, density, and crystallinity. However, the effect of temperature on electrodeposition can be complex, as excessive heat may also promote side reactions, electrolyte decomposition, or changes in the electrode surface, potentially leading to poor-quality deposits or altered electrochemical behavior. Thus, optimizing temperature conditions is essential for controlling the quality, uniformity, and properties of electrodeposited coatings and films.   Through collaboration with our partners and leveraging machine learning (ML) techniques, we identified the optimal temperature for electrodeposition processes. Subsequently, we embarked on physics-based modeling efforts to understand the intricate relationship...

Read More