logo
NICKEFFECT aims to develop novel ferromagnetic Ni-based coating materials to replace the scarce and costly Platinum and ensure high efficiency in key applications.

Social Media:

linkedin twitter

Contact:

info@nickeffect.eu

plating Tag

The NICKEFFECT project has been awarded the prestigious GREEK GREEN AWARD 2024 in the Best European Project in the Environment category. This recognition validates the project's innovative efforts and its role in driving sustainable change within the green energy sector.   The GREEK GREEN AWARD is proof of the dedication and innovative spirit of the NICKEFFECT project team. NICKEFFECT partners aim to push the boundaries of traditional materials science, and also set a new standard for environmental stewardship in the field of green technology.   At its core, the NICKEFFECT project seeks to revolutionise green energy by replacing platinum, a scarce and expensive resource, with innovative nickel structures. This strategic shift not only addresses the limitations of traditional energy technologies but also opens up new avenues for sustainable development and environmental impact reduction.   The recognition was received at the 6th International VERDE.TEC exhibition serves as a testament to the project's impact and significance within the...

Read More

In the ever-evolving landscape of industrial processes, environmental consciousness has become paramount. Industrial plating, a vital process in various manufacturing sectors, often relied on the use of hazardous chemicals and consumed vast amounts of energy to meet the growing demands in metal coatings. However, the recent market dynamics, largely affected by the sustainability policies, pave the way for greener alternatives that ensure the environmentally friendly aspects of materials and processes without compromising their efficiencies.   Effective development of eco-friendly plating begins with addressing sustainability issues early on. Chemical risk management is essential for development of electrolytes free from toxic to the environment and human health components, and for establishment of the process-specific guidelines to maximize the safety of personnel especially under conditions when the electrolyte formulation cannot be further modified. Utilizing computer aided engineering facilitates the design optimization of plating processes, reducing reliance on trial-and-error approaches and guiding efficient resource utilization. Furthermore,...

Read More