logo
NICKEFFECT aims to develop novel ferromagnetic Ni-based coating materials to replace the scarce and costly Platinum and ensure high efficiency in key applications.

Social Media:

linkedin twitter

Contact:

info@nickeffect.eu

nickeffect Tag

Magnetoelectric actuation is a burgeoning topic nowadays given the need for energy-efficient devices. Magnetoelectric actuation refers to the control of magnetic properties of materials using voltage. Several mechanisms contribute to the magnetoelectric response including surface charging, ionic migration (referred to as ‘magneto-ionics’), reduction/oxidation reactions, and ferroelectric/ferromagnetic coupling. In magneto-ionics, certain ions (e.g., oxygen, hydrogen, nitrogen, or lithium) migrate within a material when an external voltage is applied. Since electric fields, rather than electric currents, drive ionic motion, this process is more energy efficient. Potential applications of magneto-ionics include magnetic memory devices, neuromorphic computing, and adaptive magnetic materials. Electrodeposited films, micro- and nanostructures are promising candidates for oxygen magneto-ionic investigations, particularly those with high surface-to-volume (S/V) ratios. Ferromagnetic Ni, Co and their alloys can be electrodeposited from aqueous solutions. It has been demonstrated that mesoporous Ni-Cu films with ultranarrow pore walls enable the entire film (and not just the utmost surface) to contribute...

Read More

Modeling materials from first principles, i.e., without the need to fit or depend on experimental data, has taken on great importance in the last twenty years. Such methodology allows a deeper understanding of the physico-chemical phenomena dictating how materials behave. Density-functional theory (DFT) has been the tool of choice for computing the properties of materials at the nanoscale for decades. Indeed, ground-state properties such as phase diagrams, magnetism, or band gaps (determining whether a material is an insulator, semiconductor, or metal) and structures as well as more advanced properties such as charge carrier mobilities, ionic conductivity, or light emission/absorption spectra are all reachable within DFT and its extensions.   Because such computations are very demanding, both in terms of CPU power and human efforts, in the last 15 years additional tools have been developed to handle hundreds of thousands of such calculations and store them efficiently in databases. For example, the Materials...

Read More

On April 1st, NICKEFFECT and the NOUVEAU project joined forces to host an insightful webinar titled "Water Electrolysers for a Sustainable Future". This event provided insights into the latest advancements in electrolyser technologies, with NICKEFFECT focusing on Proton Exchange Membrane Water Electrolysers (PEMWE) and NOUVEAU exploring Solid Oxide Electrolysis Cells (SOECs).   This session attracted researchers, industry professionals, and students eager to learn more about innovative developments in energy systems and how these technologies are driving a more sustainable future. The speakers provided valuable insights into the challenges and opportunities associated with their respective electrolyser technologies.   Insights from NOUVEAU: Advancing SOEC Technology   Vesna Middelkoop, NOUVEAU Project Coordinator from VITO, presented "Development of SOECs – a pathway to a sustainable future". Her presentation explored how SOEC technology plays a crucial role in the transition towards a green hydrogen economy and a low-carbon future. While SOECs do not use platinum group elements (PGEs), they still contain...

Read More

Electrodeposition plays a crucial role in the fabrication of advanced coatings and materials with tailored properties. Research on the electrochemical deposition of nickel-based alloys highlights its catalytic performance. Investigating the nucleation and growth mechanisms in Ni-based alloys deposition bridges the gap between fundamental electrochemistry and practical applications.   Defining New Electrochemical Reactions   One of the key challenges in Ni alloy electrodeposition is understanding the reduction mechanism of alloying element. Unlike nickel, which reduces directly, certain alloying elements undergo a more complex reduction process. Through electrochemical modeling, new reaction pathways were defined by summing multiple electrochemical reactions and optimizing the Butler-Volmer equations. This approach enables a more accurate description of the kinetic parameters governing the process.   AI-Powered Analysis of SEM Images   To quantify the nucleation behavior, the VUB AI tool was utilized for analyzing scanning electron microscopy (SEM) images. This AI-driven approach enables precise detection and measurement of nuclei, providing valuable insights into the effect of...

Read More

The transition from laboratory-scale research to pilot-scale production is a crucial phase in developing nickel coating technologies. While these coatings are expected to provide excellent corrosion resistance, durability, and conductivity, their large-scale production and application must be assessed for sustainability, economic feasibility, and regulatory compliance. Ensuring sustainability during this transition is essential to minimize environmental impact, optimize costs, and meet regulatory standards.   A Life Cycle Assessment (LCA) evaluates the environmental footprint, focusing on raw material extraction, energy consumption, emissions, and waste management. Nickel production and electroplating are energy-intensive and generate hazardous by-products such as heavy metal waste and chemical effluents. Sustainable solutions, including closed-loop recycling, optimized plating baths, and eco-friendly alternatives, help mitigate these impacts. In addition, a Life Cycle Costing (LCC) Analysis assesses capital and operational costs, process efficiency, and market potential to ensure cost-effective scaling. Innovations such as low-energy deposition techniques and resource-efficient chemical formulations improve economic viability while...

Read More

Since the NICKEFFECT projects aims at replacing platinum catalyst based PEM Fuel Cell (FC) cathodes by porous graphite electrodes that are covered with nickel alloy (nano-)particles, the plating process for creating these nickel nuclei populations  must be properly understood and controlled.   Same as for Water Electrolysis (WE) cells, the use of porous electrodes allows creating a high surface to volume ratio.  The throwing power of a full coverage nickel alloy plating process into a porous structure as for example a carbon fiber cloth is limited (WE cathodes), and the same holds for a nucleation plating process into a porous carbon structure (FC cathodes).  But whereas the main specifications in case of a full coverage nickel alloy plating process for WE cathodes involve primarily the local plating layer thickness and alloy content, for FC cathodes practically all local characteristics of the nuclei population are of importance, involving nuclei density, nuclei size...

Read More

On December 10, the stakeholder meeting organized by the European Commission on “Driving EU prosperity: The future of Knowledge Valorisation” took place in Brussels, with live streaming broadcast. The program, introduced by Maria Cristina Russo, Director Prosperity Directorate from DG Research and Innovation, included, among other topics, panels on Industry and Academia Co-Creation, Socially Responsible Licensing or Effective Management of Standards and Intellectual Property. UNE, the NICKEFFECT's partner for standardization, participated in this roundtable about Standardization and IP.   UNE is the European standardization body with the largest number of participations in European research and innovation (R&I) projects, with around 120 funded ones, among which NICKEFFECT is one of those currently in progress. Fernando Utrilla, Head of the R&I Unit at UNE, conveyed to the event participants the best practices to take advantage of the benefits of standardization in these projects, as well as the lessons learned and recommendations to improve performance...

Read More

Hydrogen is recognised as a clean energy carrier that could play a key role in reducing global carbon emissions. In Proton Exchange Membrane Water Electrolysers (PEM WE), the hydrogen evolution reaction (HER) takes place at the cathode, where protons from the acidic electrolyte combine with electrons to form hydrogen gas. Catalysts are essential to this process, as they reduce the activation energy required for the reaction. Noble metals such as platinum are the benchmark materials for HER catalysts due to their exceptional activity and stability. However, their scarcity and high cost limit large-scale adoption. Non-noble catalysts, including transition metal-based materials such as nickel, molybdenum, and cobalt compounds, are attractive alternatives due to their lower cost and abundance. Despite these advantages, non-noble catalysts are more susceptible to degradation under the acidic conditions of PEM WE.   The degradation of non-noble metal catalysts can arise from several processes, which often are interdependent. While the...

Read More

On December 5th, 2024, industry leaders and innovators came together for a highly engaging webinar on Industrial Sustainable Plating, featuring cutting-edge advancements from two major EU-funded initiatives: NICKEFFECT and MOZART. This event offered an exciting platform to discuss the future of sustainable plating technologies, highlighting the crucial role of innovation in reducing the environmental impact of industrial processes.   The webinar kicked off with a welcome and introduction from Danijel Pavlica, Project Manager at F6S, who set the stage by emphasising the growing importance of sustainable practices in industrial plating and the important role played by both projects in driving this change.   Insights and Key Takeaways   Asier Salicio Paz from CIDETEC presented the key advancements of the NICKEFFECT project, focusing on the development of sustainable electrochemical plating processes. He began by introducing CIDETEC and its work in the Basque Country, emphasising their strong involvement in European projects and commitment to surface treatment technologies for...

Read More

In recent decades, both Vrije Universiteit Brussel (VUB) and Elsyca have independently developed multiple software tools for simulating Multi-Ion Transport and Reaction (MITRe) models. Originally utilized by VUB for corrosion-related simulations, the MITRem code has been revitalized under the NICKEFFECT project. It is now geared towards microscopic 3D electrodeposition simulations of porous structures. Additionally, various single-metal and alloy plating processes have been successfully modelled.   The workflow for MITRe model simulations involves several key steps. Initially, there's a need to identify the relevant species present in the electrolyte, followed by establishing a plausible electrode reaction mechanism. Subsequently, obtaining relevant kinetic parameters for the electrode reactions involved in the plating process is essential. Within the framework of the NICKEFFECT project, this was accomplished for a nickel alloy plating process of interest by retrofitting polarization curves using Elsyca PIRoDE software. These curves were based on polarization experiments conducted at Universitat Autònoma de Barcelona (UAB)...

Read More