logo
NICKEFFECT aims to develop novel ferromagnetic Ni-based coating materials to replace the scarce and costly Platinum and ensure high efficiency in key applications.

Social Media:

linkedin twitter

Contact:

info@nickeffect.eu

Author: Laura Cyrne

The NICKEFFECT project participated in the Artificial Intelligence for Advanced Materials Conference (AI4AM 2024), held from July 2nd to 4th in the city of Barcelona, Spain. This cross-disciplinary international event brought together top experts from industry and research institutions who utilise Artificial Intelligence (AI) to advance discoveries in materials science. The conference's main goal is to refine automated designs for both structural and electronic material models in engineering, focusing on improving interoperability among material databases and enabling reverse material engineering.   Konrad Eiler, from NICKEFFECT's project partner Universitat Autònoma de Barcelona, did a presentation on the active learning approach used to accelerate experiments as part of the project. Konrad gave some insights on the practical benefits of the Active Learning methodology in guiding experimentalists to find the best conditions for growing Ni-W films for catalysis.     Active Learning in Materials Science   Konrad's presentation highlighted how AI, particularly Active Learning, significantly aids experimentalists in determining optimal...

Read More

The NICKEFFECT consortium got together for the 5th General Assembly meeting on June 13-14, 2024, at the Universitat Autònoma de Barcelona. This gathering marked the midpoint of the 48-month project, bringing together all partners for two full days of updates, discussions, and strategic planning.   The meeting focused on a series of presentations that provided a comprehensive overview of the project's progress. Key presentations included:   Project Management and Coordination Sustainable-by-Design approach Advancements in developing Coating Materials with tuned porosity and characterization Modelling of Electrodeposition Process Upscale of the production processes, deposition on demonstrators Dissemination, Exploitation, and Guiding & Standardization Materials validation in relevant environments   The General Assembly also counted with an exciting visit to the laboratories at the Universitat Autònoma de Barcelona's science faculty. Attendees had the opportunity to observe innovative research facilities and ongoing experiments related to the NICKEFFECT project.   As the meeting concluded, the partners had a clear roadmap for the next...

Read More

In the evolving landscape of development for new chemicals and materials, the principles of safety and sustainability have become paramount. Innovations need to be driven not only by the requirement for an effective function of new products, but also towards minimizing the harm to both human health and the environment. This is evidenced by a gradual shift from the traditional considerations of “Safe by Design” and “Sustainable by Design” towards a new, holistic approach: the concept of “Safe and Sustainable by Design” (SSbD).   SSbD aims to integrate safety and sustainability concerns from the inception of a new chemical or material, and, in an iterative approach, along the innovation pathway towards commercialization. To ensure the adoption of safety and sustainability criteria, and the implementation of the SSbD approach in a standardized manner, the European Commission and Joint Research Center have developed an SSbD framework, offering detailed guidance on the methodology and appropriate...

Read More

Temperature plays a crucial role in electrodeposition processes, influencing both the kinetics and thermodynamics of the reaction. As temperature increases, the rate of electrodeposition generally accelerates due to enhanced mass transport of ions to the electrode surface and increased reaction kinetics. Additionally, higher temperatures often lead to changes in the morphology, structure, and composition of the deposited material, affecting its properties such as adhesion, density, and crystallinity. However, the effect of temperature on electrodeposition can be complex, as excessive heat may also promote side reactions, electrolyte decomposition, or changes in the electrode surface, potentially leading to poor-quality deposits or altered electrochemical behavior. Thus, optimizing temperature conditions is essential for controlling the quality, uniformity, and properties of electrodeposited coatings and films.   Through collaboration with our partners and leveraging machine learning (ML) techniques, we identified the optimal temperature for electrodeposition processes. Subsequently, we embarked on physics-based modeling efforts to understand the intricate relationship...

Read More

In a period where sustainability is crucial, innovative solutions are necessary for establishing a safer and more sustainable future. And the 4SEE Cluster was born with this premise – a dynamic collaboration between 4 different projects, funded under the HORIZON-CL4-2021-RESILIENCE-01-12 topic, that aim to revolutionise metallic coatings and engineered surfaces for the European economy. NICKEFFECT, FreeMe, MOZART, and NOUVEAU are the members of this cluster that is set to redefine industry standards, and drive innovation.   The 4SEE Cluster is a collaborative initiative focusing on safe and sustainable-by-design metallic coatings and engineered surfaces. By combining resources, expertise, and knowledge, the cluster aims to address shared challenges, enhance collaboration, and accelerate progress towards safer and more sustainable solutions.   Central to the cluster's strategy are joint communication and dissemination activities. These efforts include organising workshops, webinars, and other events to share insights, foster dialogue, and promote the adoption of sustainable practices. By bringing together resources...

Read More

The impact of additives on aqueous metal electrodeposition has fascinated the electroplating community for several decades. Additives can be classified into organic and inorganic compounds. The former are most common as they act as hydrogen permeation inhibitors, crystal growth modifiers, brighteners, levellers, wetting agents, and stress relievers. Even if added to the electrolyte in small amounts, their effect on coatings’ morphology and structure is remarkable, often without changing their chemical composition. For example, saccharine, a well-known sweetener to sprinkle onto food or added to coffee, is a typical grain-refining agent in metal electrodeposition. Saccharine is thus widely used in nickel plating as a brightener. Polyethylene glycol (PEG) is also added to nickel electrolytes to reduce surface roughness, refine grains, and promote twinning. In turn, the mechanical properties of the resulting coatings such as hardness greatly improve. Caution must be taken, though, regarding the incorporation of sulphur and carbon impurities that...

Read More

The NICKEFFECT project has been awarded the prestigious GREEK GREEN AWARD 2024 in the Best European Project in the Environment category. This recognition validates the project's innovative efforts and its role in driving sustainable change within the green energy sector.   The GREEK GREEN AWARD is proof of the dedication and innovative spirit of the NICKEFFECT project team. NICKEFFECT partners aim to push the boundaries of traditional materials science, and also set a new standard for environmental stewardship in the field of green technology.   At its core, the NICKEFFECT project seeks to revolutionise green energy by replacing platinum, a scarce and expensive resource, with innovative nickel structures. This strategic shift not only addresses the limitations of traditional energy technologies but also opens up new avenues for sustainable development and environmental impact reduction.   The recognition was received at the 6th International VERDE.TEC exhibition serves as a testament to the project's impact and significance within the...

Read More

In the ever-evolving landscape of industrial processes, environmental consciousness has become paramount. Industrial plating, a vital process in various manufacturing sectors, often relied on the use of hazardous chemicals and consumed vast amounts of energy to meet the growing demands in metal coatings. However, the recent market dynamics, largely affected by the sustainability policies, pave the way for greener alternatives that ensure the environmentally friendly aspects of materials and processes without compromising their efficiencies.   Effective development of eco-friendly plating begins with addressing sustainability issues early on. Chemical risk management is essential for development of electrolytes free from toxic to the environment and human health components, and for establishment of the process-specific guidelines to maximize the safety of personnel especially under conditions when the electrolyte formulation cannot be further modified. Utilizing computer aided engineering facilitates the design optimization of plating processes, reducing reliance on trial-and-error approaches and guiding efficient resource utilization. Furthermore,...

Read More

Magnetoresistive random-access memory (MRAM) technology is one of the current methods for memory storage.   Its advantages over earlier storage devices lie in the fact that here high speed, high density as well as low power consumption are combined to provide a nonvolatile robust mechanism for data storage.   Unlike earlier memory devices, MRAM technology uses magnetic information to store data. Basically, the structure consists of two ferromagnetic thin layers separated by an ultrathin insulating dielectric layer which usually is MgO. This results in a magnetic tunnel junction (MTJ). The device makes use of the fact that electrons also carry a spin beside a current.   Put simply, in a ferromagnetic layer, the electrons align their spins parallel to the direction of magnetization. Electrons with their corresponding spin of this layer can pass through the insulating layer easily if the magnetic alignment of the second ferromagnetic layer is parallel to the first layer. This results in...

Read More

Why are Standards important?   Standards form a common language that allows researchers, people, public institutions and industry to communicate, produce and commercialize products and services. This is especially important in the European single market. The European Green Deal and the Industrial Strategy for Europe make clear that developing new standards will be essential to boost industry’s competitiveness, build a sustainable future and shape a Europe fit for the digital age. The New Standardization Strategy presented in 2022 by the European Commission highlights the importance of standardization in promoting the uptake of results from EU research and innovation projects, allowing new technologies to scale–up and enter into the market.   How R&I can contribute to Standardization and vice versa?   Standards are a crucial tool to valorize research results.   They help researchers bring their innovation to the market and spread technological advances by making their results transparent and ensuring high quality. Standards give confidence to consumers...

Read More